ANALISIS PENGENALAN POLA PADA KEMAJUAN TIMNAS INDONESIA UNTUK MENGANALISIS REAKSI PUBLIK TENTANG KEMAJUAN TIMNAS INDONESIA

Authors

  • Aditya Liandri Universitas Lancang Kuning Author
  • Mhd Arief Hasan Universitas Lancang Kuning Author
  • Ricky Carlo Universitas Lancang Kuning Author
  • Ricko Oktanta Universitas Lancang Kuning Author
  • Ginting Ginting Universitas Lancang Kuning Author
  • Yosua Alexandro Universitas Lancang Kuning Author
  • Niko Tinambunan Universitas Lancang Kuning Author

Keywords:

Sentiment analysis, Logistic Regression, Random Forest, SVM, Indonesian National Team, machine learning

Abstract

This study aims to analyze public reactions to the progress of the Indonesian National Team using a machine learning-based pattern recognition method. Data is taken from two main sources, namely Twitter and News API, which are then processed through several stages. These stages include text cleaning to remove special characters, URLs, and irrelevant symbols, as well as removing stopwords to improve data quality. The data is then grouped into three main sentiment classes: positive, negative, and neutral. This study implements three machine learning models, namely Logistic Regression, Random Forest, and Support Vector Machine (SVM), to classify text data. The SVM model showed the best performance with the highest accuracy of 90%, followed by Random Forest with an accuracy of 88%, and Logistic Regression with an accuracy of 85%. Additional analysis was conducted to evaluate frequently used words in each sentiment class, which provided additional insights into public opinion. The results of this study provide an important contribution to understanding public reactions to the progress of the Indonesian National Team and demonstrate the effectiveness of machine learning models in text-based sentiment analysis. These findings can be used as a basis for developing more effective communication strategies for stakeholders in supporting the progress of the Indonesian National Team.

Downloads

Download data is not yet available.

References

Abadi, M., et al. (2016). "TensorFlow: A System for Large-Scale Machine Learning." Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283.

Bird, S., Klein, E., & Loper, E. (2009). "Natural Language Processing with Python." O'Reilly Media.

Breiman, L. (2001). "Random Forests." Machine Learning, 45(1), 5-32.

Chollet, F. (2015). "Keras: The Python Deep L

Choromanska, A., et al. (2015). "The Loss Surfaces of Multilayer Networks." Journal of Machine Learning Research, 14(1), 1929-1950.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." NAACL-HLT, 4171–4186.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). "Deep Learning." MIT Press.

Hutto, C. J., & Gilbert, E. (2014). "VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text." Proceedings of the 8th ICWSM, 216-225.

Joachims, T. (1998). "Text Categorization with Support Vector Machines: Learning with Many Relevant Features." Proceedings of the European Conference on Machine Learning (ECML), 137-142.

Kim, Y. (2014). "Convolutional Neural Networks for Sentence Classification." EMNLP 2014 Proceedings, 1746–1751.

Kumar, V., Singh, A., & Gupta, S. (2021). "Sentiment Analysis in Sports Analytics: A Review." International Journal of Sports Analytics, 10(3), 45-56.

Le, Q., & Mikolov, T. (2014). "Distributed Representations of Sentences and Documents." Proceedings of the 31st International Conference on Machine Learning, 1188–1196.

Liu, B. (2012). "Sentiment Analysis and Opinion Mining." Synthesis Lectures on Human Language Technologies, 5(1), 1-167.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). "Learning Word Vectors for Sentiment Analysis." Proceedings of the 49th Annual Meeting of the ACL, 142–150.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). "Efficient Estimation of Word Representations in Vector Space." arXiv preprint arXiv:1301.3781.

Pang, B., & Lee, L. (2008). "Opinion Mining and Sentiment Analysis." Foundations and Trends in Information Retrieval, 2(1–2), 1–135.

Pedregosa, F., et al. (2011). "Scikit-learn: Machine Learning in Python." Journal of Machine Learning Research, 12, 2825-2830.

Pennington, J., Socher, R., & Manning, C. (2014). "GloVe: Global Vectors for Word Representation." Proceedings of the 2014 EMNLP, 1532–1543.

Rosenthal, S., et al. (2017). "SemEval-2017 Task 4: Sentiment Analysis in Twitter." Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval), 502–518.

Sari, D. R., & Rahmawati, A. (2020). "Implementasi Sentiment Analysis pada Data Twitter." Jurnal Informatika dan Komputer, 11(2), 100-110.

Sutton, R. S., & Barto, A. G. (2018). "Reinforcement Learning: An Introduction." MIT Press.

van der Maaten, L., & Hinton, G. (2008). "Visualizing Data using t-SNE." Journal of Machine Learning Research, 9, 2579-2605.

Vaswani, A., et al. (2017). "Attention is All You Need." Advances in Neural Information Processing Systems (NeurIPS), 30, 5998–6008.

Yulianto, B., & Setiawan, H. (2019). "Analisis Sentimen Berbasis Machine Learning pada Media Sosial." Jurnal Teknik Informatika dan Komputer, 7(3), 120-130.

Zhu, Y., Wang, L., & Li, Z. (2020). "Machine Learning for Sentiment Analysis in Football." Journal of Artificial Intelligence Research, 8(4), 220-235.

Published

2025-02-08

Issue

Section

Articles

How to Cite

ANALISIS PENGENALAN POLA PADA KEMAJUAN TIMNAS INDONESIA UNTUK MENGANALISIS REAKSI PUBLIK TENTANG KEMAJUAN TIMNAS INDONESIA. (2025). Journal Global Scholar : Social and Political Sciences, 2(1), 189-197. https://journal.journeydigitaledutama.com/index.php/jgssp/article/view/115

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.